RESONRNCE(U) CRLIFORNIR UMIV LOS RNGELES CENTER FFR
; PLASMA PHYSICS AND FUSION ENGINEERING J E MAGGS ET AL
UNCLASSIFIED FEB 88 PPG-1131 NBG@14-84-K-8583 F/G 20/9




PR
>

-
XNty
' ., 4.

5 5

2
I
e P

A
M

P}
]

7

el

l"” 25 W14 wy.e

-
]

.,.. .‘..
r‘i >
v, e g

2l

P

SR

oo
%

.l
-

AR A8
PV |

L9
e
- @

~ \.:n.: "s.’ "-,."'«. L R
‘ ”.r‘-
.r‘*'.r

“..-".f:.-:'




DR
PN
’ a b

WO
(272 ¢ 2

P e
'y ]
RN

'

-om 3 N )
b
P

e o+ &

- -
5,7,
1"}

P
b}

Py
n‘ls]“‘.}

<

=

%

I Y P Y
Pt
J;’y}')‘j‘;h

ey
Aﬂ} " S

';\

P

T

7
X

e
-l

;‘f_:':' 2@ x

s‘ﬂ'l.‘\* -

AD-A192 951

l - e —

Contract N00014-84-K-0583

Electrostatic Whistlér Mode Conversion
at Plasma Resonance

J. E. Maggs and G. J. Morales

PPG~-1131 February 1988

CENTER FOR
PLASMA PHYSICS
AND
B | FUSION ENGINEERING

2 n2. 0Ka.

UNIVERSITY OF CALIFORNIA
] LOS ANGELES

8

Approved for public reloawe;

DISTRIBUTION STATEMENT A
Disuibution Unimitad

e s T AT e b

: 0 - TR w Y
“. » 5 S ~ N -~ n*n .I‘"I u. .ﬁ!:‘ﬁ'&t‘!’:‘?’n. ‘M.\la £ ‘ »




L P
Ay
3

r

¥ 4
T ‘.J‘
Fars!

-

A
s
ANy

=

'
)

‘
v
s

Contract NOOQ14-84-K-0583

'bﬂ Electrostatic Whistler Mode Conversion
" at Plasma Resonance

F J. E. Maggs and G. J. Morales

piss PPG-1131 February 1988

DTIC

RAELECTED™

Lk A0 \" S
:'.'. € MR 281! 1
‘ - ‘~I \\4 \}
R N

.

University of California

Department of Physics

-
]

.
Sk

Uy
P

Los Angeles, CA 90024-1547

A0
L

Ay
o

0y

NI

VY e B

x
» Y ¢
A SN
faratt

-
-

" DISTRIBUTION STATIMINYT K |
Approved fop rablic eelecss;
Diateiagoen 0 Jiuited |

@

T

L, e
> F A

i
b

~ o e
X ¢

APy g Lo S L ' e L LA PSSO b L L T R DL L
R .nk.‘u.":'ﬁc A e'..!"..:':.::: ) 04:!:’! It ,A.‘.c.f;"au. X .!".l. .l"‘v.' KA b?b(‘ mm m‘&.‘\.: ;:{tm&mﬂt.{ﬁa




ELECTROSTATIC WHISTLER MODE CONVERSION

. AT PLASMA RESONANCE
<
~
- J.E. Maggs and G.J. Morales
. Physics Department,
' University of California at Los Angeles,
: Los Angeles, CA 90024
b
N
; *: ABSTRACT
The mode conversion of an electrostatic whistler wave into a
B Bohm-Gross mode at plasma resonance is analyzed for a magnetized plasma
‘: with a longitudinal density gradient (i.e., Vny, x B = 0). It is found
N that a whistler incident upon plasma resonance from inside the plasma
,: converts, without producing a reflected wave, into a short wavelength
Bohm-Gross mode that carries energy down the density gradient away
’ from resonance. The detailed structure of the electric field near the
,i‘ resonance is found analytically. It is shown that the production of
ji the Bohm-Gross wave by mode conversion can be described by a model of
b plasma resonance driven by a k=0 electric field (i.e., the capacitor
'i plate model). The relation between the driver amplitude and the
» amplitude of the incident whistler is derived.
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I. Introduction:

This paper analyzes the process of mode conversion of a long
wavelength electrostatic whistler wave into a short wavelength Bohm-Gross
mode. The whistler with frequency w, lecs than the electron
gyrofrequency, @ (i.e., w < 1), propagates from inside the plasma in the
direction of decreasing density to the plasma resonance point, Wpe = W,
(wpe is the electron plasma frequency) where mode conversion occurs.

N The electrostatic whistler waves considered here satisfv the

dispersion relation e”knz/k2 + CLkLQ/k2 = 0, where in the cold plasma

AN
¥

- ‘mi - . 2 7,2 -1 - 2 2.2 i -
N limit £, 1 wpe /w? and £, 1 Wpe /(w?-0%). In a magnetized plasma
“Fal
\: in which the density varies only along the magnetic field direction, z, as
“ illustrated in Fig. 1, rhe WKB wave number component along the magnetic
49
x field, k”= kl(-el/e“)l’z, is a function of position. As the whistler wave
. x‘

. propagates towards lower densities so that Wpe approaches w«, €, approaches
" .
{ ] . zero and the parallel wave number becomes large. The inclusion of finite
VI
A5 temperature effects in the parallel dielectric component, £ then allows
B Te
- the long wavelength whistler wave to couple to the short wavelength Bohm-
K Gross mode near plasma resonance. The whistler wave propagating to plasma
B .

- resonance then mode converts into a short wavelength thermal mode that

' propagates away from resonance towards decreasing density.

> This particular mode conversion process is of general interest because
-~ .

1)

3 it represents a channel for converting wave energy into fast electrons.

o The auroral ionosphere which is characterized by non-thermal levels of

)

. whistler waves and field-aligned electron distributions is a natural
-
-

- plasma in which this process is likely to occur. In the auroral
ARE
': ionosphere the density gradient in the background plasma is aligned nearly
] along the magnetic field so that a model plasma with a field aligned

.
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:\: density gradient is appropriate for describing this environment. Whistler
L::j mode conversion may occur naturally in the auroral ionosphere or be
l‘ stimulated artifically by launching waves from polar orbiting spacecraft.
AN

o The main purpose of this study is to determine analytically the

-):.’

o detailed structure of the electric fields involved in the mode conversion
f“ process. This knowledge can then be used in later computations to

.

It

'iuj determine the changes in the electron distribution produced by

Y acceleration from the mode converted whistler wave.

. In section II the equation governing the structure of the electric
.

\--- 3 . 3 . s

o potential is derived and an integral representation of the general

d \‘.

f}j solutions is obtained. Asymptotic and series expressions for the short
N -v.

wavelength solutions are obtained in section III while the properties of

LA

P

At . X . .

:xf the long wavelength solutions are examined in section IV. The mode

S
-

~ . . . .

\i conversion process is treated in section V and the structure of the mode
%)
( converted electric field is determined in section VI. Conclusions are
g

o presented in section VII.

o

h

‘ I1. Governing Equation:

<

_:ﬁ The equation determining the structure of the electric potential in
A

'!i the plasma is

[ 2"

'g‘ VeeeV & = 0, (L)

1 8
s e
B

where & is the electric potential and &£ the plasma dielectric tensor

operator. For the model plasma described here, the electric potential

- -

amplitude, ¢, varies only along the z-direction and ¢ can be written in

the form

e wlh, &
o2 tor et @S

8(x,z,t) = g(2)exp( i(kx - wt)]. (2)

Furthermore the plasma dielectric tensor components depend only upon z
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y
- and in the cold plasma limit are: ey, = €,0 = €yy = €,y = 0, £qy = £y = £,
‘i P XZ zZX yz zy XX vy 1
-
¢ - -1 - - - -
e £xy 1(O/w)(:l 1) Eyx, and ¢, £
{ A plasma with a nonzero temperature supports modes which propagate
:*'
' . :
) both along (Bohm-Gross modes) and perpendicular(Bernstein modes) to the
2 . .
1& magnetic field. The Bohm-Gross modes arise from thermal corrections to
¥
l? the parallel component of the cold plasma dielectric, £y o while the
‘N
.:~ Bernstein modes arise from thermal corrections to the perpendicular
-
b component, ei. However, since we are considering whistler waves which
L
: necessarily have w < 1 we need not consider coupling to Bernsteir modes.
A2
;il In addition, we consider the case in which the electron gyroradius (vl/ﬂ)
-
::: is much smaller than the perpendicular wave length so that thermal
o
Q‘ corrections to the perpendicular dielectric component are negligible.
- The lowest order thermal corrections to the parallel
- component of the plasma dielectric cause it to become a differential
{ operator,
" 2
) w -2 .2
.- e, =1- P +45 d (3)
:‘. w? w? dz?
Tw,
I3
~ where v is the thermal velocity, J(ZT/m), and wp is the electron
v
By : :
gy plasma frequency which, here, is a function of z. The factor ¥ has the
<
-
j value three since the electron motion is essentially one-dimensional. The
N
@ parallel wave number usually appearing in the Bohm-Gross dispersion
AN
I -
;q relation has been replaced by the operator, -i d/dz, because the plasma
o,
) . . . . .
N is nonuniform in the z-direction.
&
S
[ J Since the mode conversion process occurs in the immediate vicinity of
. plasma resonance we make the approximation that the density varies
iy
. linearly along the magnetic field with scale length, L, the density scale
length at plasma resonance. The plasma frequency can then be written as
'y
'
Y

..... . tp vl
A
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.J
L)
U 2,2
.‘:,,- Wpe Jw =1-2z/L=1-13%, (4)
\ »
D . X . s . .
::-\ where 2 is the dimensiouless position variable, z/L. Since the number
)' »
( ) density in the plasma is always positive, z must be restricted to the l
'!\h
Y . . : . .
L regime less than unity in order to model a physical plasma. Using (4)
--‘.-I
.-\-l . . .
oA the perpendicular and parallel plasma dielectric components become,
b
» e o= G- YD/(LYY) e =3 4y e2d2 (5)
.-': d;z
.y
s
s
O
1
b7 where Y = Q/w and £2 = yv2/(w?L?). Using (2) and (5) in (1) then
e
- - results in,
v ~"\*
2
N e 68+ 2602 +apl) + g2 - 8 -0, (6)
S50
‘~:\\ which determines the spatial structure of the electric potential.
D
'!_ Equation (6) has the same form as the equation analyzed by Maggs, et. al.
J'_
'_:-;_:: (1984) except for the sign of the term proportional to ¢. The sign
. _: difference arises because here w < 1, while the earlier work treated the
SO
{ case w > (1. In (6) the parameters ,61 and '82 depend upon the perpendicular
28
o
o wave number,
.:.,.
Ko
Dt K212
: 2 2
) By =_L . By =Y B2 (7
A 2
! Y2 -1
o
n“\‘)
- .
: 3 and the notation ¢(J) denotes the jth derivative with respect to z.
1 1.8
o S The parameters ﬂl and ;322 are real and positive since the
-2l
1%
b ! . . s -
ﬁ"_:: electrostatic mode is in the whistler band and w < 1 so that Y > 1. The
H"
_l parameter a has the value unity for a plasma, but we consider general
) -
Q.- values of a in the mathematical analysis of Eq. (6) because this procedure
e
o is necessary to obtain the structure of the electric field in the vicinity
B \'.-
e
-:::. of plasma resonance, as pointed out by Rabenstein (1958) in his classic
23
A aper on mode conversion. The parameter €2 = yv2/(w?L?) is the square of
S5 pap P q
D &j
W
) ::j
'Y
~:
A
LX
.
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the ratio of the Debye length at plasma resonance (i.e., w = wpe

to the density scale length, and is here taken to be a small parameter.

, or # = 0)

AN P r it

‘_ If ¢? is set equal to zero a second order differential equation,
i referred to as the reduced equation, is obtained from (6). The reduced
o
h! equation determines the potential structure in the cold plasma limit.
v

» -

Transforming the independent variable of the reduced equation to ¢ = 2iﬂ2;

Eﬂ and substituting the function ¢ = u exp(-£/2) results in
; eu(® + (@ - HHul) ~(a/2 - if)u =0, (8)

; where B, = ﬁl/(Zﬂz). Equation (8) has the form of Kummer's differential
% equation, and lincarly independent solutions can be written as combinations
5 of the Kummer functions M(a.,2;i€) and U(a.,a;i€), where a. = a/2 - if,
4 (Slater, 1970).

~

_: In addition to the two independent solutions to the reduced equation,
:z cnother pair of basic solutions exist which depend upon ¢2? being finite
1 (i.e., €2 # 0). This solution pair is related to the Bohm-Gross modes and
5 thus has relatively short wave length in comparison with the solutions of
‘Al

22 the reduced equation. The equation describing the pure thermal modes can
; be obtained from (6) by setting ﬁz ( and hence Bl) equal to zero. Doing
' this, changing the independent variable to n = £°2/32  and writing u(sn)
N

N instead of ¢(3) gives, after integration,
 ‘ u(3) &+ nu(l) + (¢ - 1)u = constant,. (9)

; For the case a = 1, Eq. (9) becomes the inhomogeneous (i.e., driven)

2 Airy equation for u(l) | which is proportional to the electric field.

! The short wave length solutions are thus related to Airy functions

;2 and the integrals of Airy functions.

%; Since the coefficients of the derivatives in (6) are all constant or
l, linear functions of the independent variable #, general solutions can be
:

v
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obtained in integral form by using the Laplace transform technique

(Coddington and Levinson, 1955). The solutions then have the form,

S(3) = J ds e-s; exp ( -f s Q) dt) , (10)
c P(s) P(t)

where P(s) and Q(s) are polynomials obtained from (6) by replacing ¢(n)
by (-s)? to obtain an expression of the form, P(s)z + Q(s). Using this

procedure we find that P(s) = s? + ﬁ22 and Q(s) = €?s* - as - B.. The

1

contours denoted by C in (10) are chosen so that the bilinear concomitant,

e-S; exp( -fs Q(t) dt) , (11
P(t)

which is essentially the boundsry term obtained after an integration by

parts, is zero at the end points of the contour. For the problem under

consideration the solutions have the form

-
, (%) =J (s + 187 (s - 18,)%" exp( -(e?s3/3 + s§)) ds,  (12)
A c
.
-Ka
4' where,
O
7 =2 + ie?p,? (13.a)
Y ay =a/2 -1+ 1B : a. =a/2 -1 - iB , (13.b)
; B = By + i(c28)°)/2 ; By = B1/(26,), (13.¢)
: The contours in the integral representation (12) must be chosen so that
2
\: ‘the condition
&, (s - iﬂz)a/z-iﬂ(s + i)/ 2B exp( -(e2s%/3 + s3)) =0,  (14)
§
'3
'
(
.
D)
x’w’\“&

- e - . - o, _ - i
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is satisfied at the end points.

Since a4 and a. are not integers, the points s = iﬂ2 and s = -iﬂ2 in
the complex s-plane are branch points. Therefore, to obtain analytic
solutions using the integral representation it is necessary to cut the
integration plane with branch lines. Since, in general, a, ¥ a. the two
branch points can not be connected by a single branch cut. Thus the
integration plane is cut with two branch lines extending from the branch
points to infinity parallel to the real axis as shown in Fig. 2. In the
cut plane the term (s-iﬂz)a' is single valued for 2mm < 6. < 2n + 2mm,
where §. denotes the argument of s-iﬂ2 and m is integer. The term
(s+i/32)ol+ is single valued for 2nx - n < 44 < 7 + 2nm, where §, denotes
the argument of s+iﬁ2 and n is integer.

Equation (l4) can be satisfied by contours that end at the points
s = iﬁz or s = -iﬁz, provided that Re(a/2 * if) > 0, or by contours that
proceed to infinity along rays such that exp(-£2s3/3) vanishes. It is
convenient to define two basic classes of solutions with members denoted
by Aj and Bj . The solutions A.j are obtained from the integral
representation (12) by using contours that begin and end at infinity. The
solutions Bj are obtained by using contours with at least one end point at
s = -1, . Some of tuese contours are illustrated in Fig. 2. The
solutions B2’ B3, and BO are closely related to the solutions of the
reduced equation given in (8). Asymptotically B, and B, represent long

2 3

wavelength propagating waves. The solution A1 is related to the ¢2 ¥ 0O

class of solutions which satisfy Eq. (9). Asymptotically A, represents a

1

short wavelength propagating wave.

Y W WY N By W W, W
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ITT. short Wave Length Solutions:

In this section we investigate the behavior of the solutions that
asymptotically correspond to the short wavelength solutions of Eq. (9).

We evaluate the leading term of the asymptotic series for the solutions A,
which is useful for determining their behavior at large . We then obtain
a series representation for Aj which can be used to evaluate these
solutions for small z. The asymptotic expression is needed to identify
the thermal mode produced in the mode conversion process while the series
expansion is needed to evaluate the electric field structure near the
origin (i.e., plasma resonance).

The contours describing the solutions Aj have both end points at
infinity. An example of the contour for the solution labeled A1 is shown
in Fig. 2. 1In order for the condition (14) to be satisfied at large
Isl, the term £2?s%/3 must have a positive real part, i.e.

2n(2-3)/3 -n/6 < arg(s) < =n/6 + 27(2-3)/3 . (15)
The integer j in (15) labels the open sector in the s-plane of angular
width n/3 centered about the angle 2x/3 for j=1, O for j=2 , and -2n/3 for
j=3. The contour for the function Aj has its end points at infinity in
the two sectors other than sector j. For example, the contour for the
function A1 proceeds to infinity in the sectors labeled by j = 2 and 3.

In order to study the properties of the functions Aj it is

convenient to make the transformation of variables

o = £2/3s ; p o= "2/37 . Oy = 152’352 . (16)
With this transformation, the integral representation (12) has the form
-2(a-1)/3

A (n)
5m

(z'7-<70)o"(a-mo)a+ exp( -(g3/3 + an)] do , (17)
C(A.
( J)

e Y M L

*”a

"-'I"

PN rﬂw
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where C(Aj) is the image of the contour for Aj under the transformation
(16).

We first investigate the asymptotic properties of the functions Aj(n)
by assuming that £? is small and the magnitude of 3 is large,
specifically, Izl >> 57ﬂ22. The saddle point method of integration can be
used to evaluate (17) under these asumptions. Defining f(o) = ¢3/3 + o7,
the saddle points are determined by the condition f'(¢) = 0. Thus the
integrand of (17) has two saddle pointe at o = *in!/2, The condition of

S

large Iz! insures that o, >> o, , i.e., the saddle points are far removed
from the singularities in the integrand of (17). Demanding that a saddle
point lie between the Stokes lines (which are located at arg(s) = 0, 2=n/3,
and 4n/3) places the following restrictions on the argument ranges of the
functions Aj , .

2x(2-3)/3 + 2r/3 < arg(os) < 4n/3 + 2n(2-3)/3 . (18)

For the saddle point o = in!/2 (18) gives the argument ranges

4n(2-3)/3 + n/3 < 8 < 5n/3 + 4m(2-3)/3 , (19.a)

while the saddle point o = -inl/2 gives the argument ranges

e, 15

4n(2-3)/3 - 5n/3 < 8 < -m/3 + 4m(2-3)/3 , (19.b)

»
=R A

1

where § = arg(#). The argument ranges for the two values of the saddle

h
Mt

point are illustrated in Fig. 3.

The direction of the path of steepest descents through the saddle
n point is obtained by assuming f(o) has the form, x? = f"(as)(a-os)2/2 ,
n
where x? is real and positive (i.e., has argument zero). The sign of the
- leading term in the saddle point method of integration is determined by
choosing the sign of x = #(0-0,)(f"(0g)1/?) such that x is positive along

the direction of the contour of integration. Thus, if the contour of

I
l‘ td
e T

RS

. ® >
’&.’1.~ TSNS

IS

&
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integration passes through the saddle point in the same (opposite)

Ty

. g
A
Y

-
2

direction as the path of steepest descents the plus (minus) sign is

x

chosen. Since f"(og)/2 = o5 , the positive direction of the path of
steepest descents has arg(a-as) - -arg((inl’Q)l’Q]/Z for the saddle point
o, = inl/2 and arg(a-as) - -arg((-inl’z)l’z)/Z for o = -in'/?2 . The leading
term in the asymptotic expression for Aj(q) then gives, for the saddle point
og = inl’/?

asn) = ()3 pyJr (1152 23 (20.2)
where Py = Py = 1, and P, = e-i27ay | The factor pj in (20) arises

because the saddle point for the solution A, lies in the Riemann sheet

1
where the argument of the term (0-0,)%+ is 2x larger than in the
principal sheet. For the saddle point og = -in!/2

aj(n) = (3 py Jn (in1r2)anS/2 2@ /3 IS (20.b)
In (20.a) and (20.b) the variable ¢ is defined as ¢ = 2943%/2/3

The asymptotic behavior of Aj as given by (20.a) and (20.b) contains

]
]

e

the exponential term, exp(%i¢), where ¢ = % e"'23/2. VWhen ¢ is imaginary,

I S R
[N
v e

L GH

the argument of the exponential term (i.e., *i{) is purely real and Aj is

IR Y
2

~

O

either spatially growing or decaying. For example, with arg(z)=n/3,

v

'..

i

S = i% € 11%2|%/2 and , as illustrated in Fig. 3, A2, which is asymptotically
;:;: proportional to exp(-i{) as given by (20.a), represents a spatially growing
L

!‘, function while (20.b) indicates A1 represents a spatially decaying
N
‘”j: function.
':u
::: When the variable ¢ is real the exponential term in (20.a,b) is

Ve

w.r oscillatory and A, represents a propagating wave. e assumed tempora

’W i1l y and : propagating Th d poral
j§ dependence exp(-iwt) determines whether the phase velocity of the wave is
Ce.

$?: positive or negative. For example, with arg # = 0, ¢ is real and positive
> e
'A&' and, from (19.a) and (20.a), we see that A3 is defined for arg # = 0 and
iy
S
o
i
R

P "o

LR SR GV oy
i ’.t.'
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4

is

:: varies as exp(-i¢), while (19.b) and (20.b) indicate Al is cefined for this

 §. argument value but varies as exp(i¢{). The phase of Al then varies as

(‘ (¢-wt) so that Al asymptotically represents a positive phase velocity wave

i: (i.e., a wave propagating left to right) for arg # = 0. Similarly A3 ,

% for arg # = 0, represents a right to left propagating, or negative phase

!‘ velocity, wave. The asymptotic behavior of Aj at various values of the

i& argument of # is indicated in Fig. 3.

o

?? The solutions Aj can be evaluated for small values of the independent
variable # (i.e., near plasma resonance) by deriving a series expression

EE from the integral representation (17). This can be accomplished by

.i expanding the term (a-ao)a'(a+ao)a+ in the integrand of (17) in a series

4

in 04/0 and integrating term by term. Carrying out this procedure (the
details of the calculation are given in Appendix I) gives the following

series representation of A, , valid in the finite g-plane,

]
Agm = ) Y e OF L@mb ot @D
k m :

%" N,

.ol

where

pPr2rr

I;(a-m k) = 2ni exp(ri(1-p)(7-21)) / (3% T(p)) , (22)

22

and p = (4-a-m-k)/3. The phase factors pj are the same as given
previously for the asymptotic expressions (20.a,b). The restricted
argument ranges given in (19.a,b) that apply to the asymptotic expressions
(20.a,b) do not apply to the series expression (21) which is valid for all
values of arg(n). Since oy = 52/3ﬂ2, it can be assumed, for a plasma with
'! a gentle density gradient, to be small because ¢? <« 1. With o, small, Aj

can be approximated from (21) by using only the m = 0 term.

J
’
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- IV. Long Wave Length Solutions:
:j In this section we obtain approximate expressions for the solutions Bj
)
( and BO in terms of the well known Kummer functions M and U (Slater, 1970).
z: The leading term of these approximations is related to the cold plasma
;: electrostatic whistler. The expressions obtained here are used to
.
' ' identify the solutions that asymptotically represent whistler waves in the
|
mode conversion solution given in Sec. V.
;b The contours for the solutions Bj and BO have at least one end point
A.I
at the branch point located at s = -iﬂz. To obtain an expression for Bj
4N
f: and Bo in terms of familiar functions it is useful to express the
-
N integrand of (12) as a Taylor series in 2,
X
B.( €2) = B,.(0) + €2 3 ,B_.(0) + ... , 23
HEDES ¢85 (23)
s where Bj(O) is obtained by setting ¢? = 0 in (12),
N
,!.
AR r a a
B, (0) -J (s + 1p,)%* (s - 1,)% exp(-s3) ds ,  (24)
2 C(B,)
. J
”
where a, is a, evaluated at ¢? = 0 , namely
a, =@a/2 t if, - 1. (25)
- In (23) and (24) j can have the values 0, 1, 2, or 3. Since Bj(O) is
¢ obtained by setting e? = 0 it is clearly a solution of the reduced
L]
d equation (i.e., (6) with &2 = 0). The £? expansion given in (23) thus
:ﬁ represents successive thermal corrections to the cold plasma whistler
q mode.
l
i, The solution Bo is obtained from the contour which starts at s = —iﬁz,
",
:. circles the point s = iﬁz in the counter-clockwise direction and returns
to the point s = -152, as shown in Fig. 2. Changing the variable of
*
"
N}
o
N
,
¢
:o
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integration in (24) to s = iﬂzp gives

a4
By(0) = (8% [ Tap (p-1® (p+1)** exp(-ipBe). (26
-1

In (26) the limits of integration with the notation (1+) denotes that the
contour starts at p = -1, circles the point p = 1 in the counter-clockwise
direction, and returns to the starting point p = -1. Since the integral

representation for the Kummer function M(b,c;x) for Re(b) > 0 is (Erdélyi,

1953),

1

1 . b
M(b,c;x) = T(e)T(b-c+l) J( B xe bel | gyesbol 27

2nil'(b) 0

BO can be obtained in terms of M(a,b;x) by changing the variable of

integration in (26) to t = (p+l)/2, giving
1 1+ '
By(0) = (2iﬁ2>° 1 18y7 I( %t-l)a' t2+ exp(-128,7t) dt. (28)
0

Choosing b = a_+1 = a/2 + ify = @ - a and ¢ = @ in (27) then gives,

By(0) = (218,21 ¢'P2% gxi I(a-a) M(a-a,ai-2i8,8). (29

I'(a)T(1l-a)
where a = a/2 - i, = a_. + 1. The expression (29) is valid for all
values of arg(#). The higher order corrections to BO in the expansion
(23) can be shown to depend upon M and its derivatives with respect to 8,
(Maggs, et.al., 1984), but we do not attempt this here.
The contour for the solution Bj(O) extends from s = -iﬂ2 to infinity

in the sector labeled 'j’ in Figure 1, passing above the point s = iﬁz
At large is) the integrand in (24) varies as sa-2 o-S7 | In order for the

integrand to be bounded along the contour for a 2 1, it is necessary to

«
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J: require that # be nonzero, i.e. Izl = Iz, > 0 where #, is arbitrary but
: small and non zero. Thus for the solutions B, (j = 1,2,3) the expansion
4 oy (23) is valid only for nonzero values of z. This feature is evident in the
>~
Al
}: Kummer function U(b,c;x) which is singular at the origin for Re(c) =2 1
-;: In addition to the requirement Izl = 12,1, the integrand in (24) is
! bounded only when Re(sz) > 0, i.e.,
.‘.
L -x/2 < arg(sz) < n/2 . (30)
o
",
,:: The requirement (30) combined with (15) gives the argument ranges over
. which the functions Bj(O) are defined by the integral representation (24),
S
SN
b 27n(j-2)/3 - 2n/3 < arg(z) < 2n/3 + 2=(j-2)/3 . (31)
K"
vf: The argument ranges given by (31) are compared to those for the functions
£,
. Aj as defined by (19.a,b) in Figure 4. Using the transformation
4 f‘:
- s = 2iB,(t+1/2) , (32)
29
;: in (24) results in
/ -1 -i el
‘e B, (0) = (21&2)“ L 187 jw t?- (e+1)3+ exp(-2i8,7t) dt , (33)
N 3 - 1

]
[

where the contour in (33) extends to infimity along a ray with

=

P arg(t) = 6.
;? The integral representation of the Kummer function U(b,c;x)
>
‘o '
o is (Erdelyi, 1953)
A
-j (o+) - -b-
9 Ub,esx) = _T(A-b) e 1™ [ 21 ey Pl expoxey ar. (34)
2 2ni well
o
o
S
;2 In (34) the contour starts at infinity with arg(t) = 6§, circles the
.i origin in the counter-clockwise direction and returns to infinity with
4:: arg(t) = § + 2n. The integral in (34) can be divided into three separate
¥ "
'’

X A A

integrals,

2L '\-‘\
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e 5 16+2x
h b, (0+) I-l N I(U+) N Jme
f:E welf welf -1 -1
-~ (35)
{ = I + I, + 1
B 1l 2 3
‘faﬁ The integral I3 on the right hand side of (35) is like I1 except for the
el
“::. direction along the contour and the argument of the variable of
!‘> )
!f) integration. The argument of the variable of integration in 13 is 2n
"N
ﬁa larger than in I1 so that the term tP-l in 13 is exp(i2np)times the same
-
1“ »
vy term in I1 . Since the argument difference of 2n does not alter the other
2 St
terms in the integrand of (34), 13 is simply -exp(i2np) times I1 . The
ol s
o, integral 12 in (35) can be related to elﬂZ; M(a-a,a;-ZiﬁZ;) by changing
A
S —
f{j the variable of integration from t to t = t+l. Applying (35) to (33) and
o L%l
o using (34) then gives
e B.(0) = (2ip ool x e 1‘32; 4 U(a,a;2i8,%)
o ] 2 Py \ 2
[ >0 sin(ra)l(l-a) -ira 1
o - e F(a-a)M(a,x;2i8,%)
LAY 2
A I'(a)
f (36)
-
o where a = a/2 - if,. Even though the subscript j does not appear
:;: explicitly on the right hand side of (36) it is present implicitly
. because of the argument range restrictions given by (31). Since
iy ¥
NS .
B :n U(a,a;2152;) is a multivalued function the asymptotic form for Bj , as
"
s
;"ﬁ obtained from (36), depends upon the value of arg(z) and thus on the
KX
[ ] value of j.
u
Qig Equation (36) can be used to obtain asymptotic expressions for Bj
‘ﬁ% that can be related directly to whistler waves in the cold plasma limit
." when the physical value unity is used for the parameter e (i.e. a=1).
ghl
;E;; For example, defining w = Ziﬂzz and taking arg(#)= 0 gives arg(w) = =n/2
L =
":: and for this argument value the asymptotic values of U(a,l;w) and
-
3 ) M(a,l;w) are
p
ol
0".
e
Y
@
N
\ﬁg e
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U(a,l;w) ~ w8 | (37.a)

M(a,l;w) ~ w8 elma 4 ya-1 ow (37.b)
T(l-a) T'(a)

From (31) and Figure 4 we see that the argument range of B2 contains
arg # = 0 so that using (37.a,b) in (36) gives
B,(0) ~ -T(l-a) e-ima ya-1 ow/2 (38)

With the chosen time dependence exp(-iwt), the phase of B, as given by

97
(38), varies as 28,#-wt so that 52 is a left to right traveling wave for
arg # = 0, because for w < 3 (i.e., electrostatic whistlers) the phase
velocity and group velocity are in the same direction (forward wave).

As a further example, consider the asymptotic behavior of Bj at

arg # = n, i.e. arg w = 3n/2. The asymptotic values of U(a,l;w) and

M(a,l;w) at arg(w) = 3n/2 are,

U(a,l;w) ~ w'@ _ 2ni e-ima y-a  ogpq w8-1 oW , (39.a)
'(a)T(l-a) I'(a)T(a)
M(a,l;w) ~ e-ima y-a  ya-1 ow (39.b)
I'(l-a) I'(a)

where the principal branch of the multivalued function U(a,l;w) is taken

as -m < arg(w) < . From (31) we recognize that the argument range of 83

contains the value arg 2 = n so that using (39.a,b) in (36) gives
33(0) ~ -T'(1l-a) wa-1l gima ow/2 (40)

Since the argument of # is n, the phase of B, varies as ﬂ2];|+wt. For

3
constant phase then, |#| decreases as t increases, and since # is negative
B3 represents a left to right propagating wave for arg(z)= n. The
direction of propagation for Bj with a = 1 is shown for selected values

of arg 2 in Fig. 4.

The asymptotic expressions (38) and (40) are consistent with the WKB

3 > AW
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form of the whistler in the cold plasma limit. Using Eq. (6) with £2 = 0
and the fact that the WKB solutions vary as exp (if k“d;), gives the WKB
dispersion relation,

- # k2 + dak, +(;ﬂ22 - B =0, (41)
where the derivative of k“ has been assumed negligible. From (41) we
obtain

ky = 1(a/2 + iB)/7 + B, (42)
where terms of order 1/z? have been ignored since z is assumed large.
Using (42) then gives

if k, &2 = -(a-a)lnz + if,p | (43)
so that the WKB solutions are proportional to (;)a'aexp(iﬂzﬁ). For
a = 1 this behavior is the same as obtained in (38) and (40) for B

2
and B, .

3
The functions Bj(O) (with j = 1,2,3) are singular at the origin
because of the singularity in the function U(a,a;Ziﬂz;). For a = 1 the
function U diverges as 1lng as # approaches zero. Thus near the origin the
€? expansion of (23) is not useful for evaluating Bj . However, the
behavior of the solutions Bj near the origin can be determined by

expressing them in terms of the solutions B, and Aj as discussed in

0

section VI.
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V. Mode Conversion:

In this section we consider the case of an electrostatic wave
propagating in the whistler band incident upon plasma resonance from
inside the plasma. 1In the whistler band the phase velocity is in the same
direction as the group velocity (i.e., the whistler is a forward wave) so
that, in the model plasma, the incident whistler is a positive phase
velocity wave approaching the origin along the negative real z-axis. Thus
we look for a solution at negative values of 2, i.e. arg(z) = n which
contains a part corresponding to a long wavelength incident wave (i.e.,
propagating from left to right) together, perhaps, with a reflected wave.
On the other side of plasma resonance (i.e., arg(#)=0) the solution must
be bounded at infinity and be consistent with energy transport away from
the origin. Thus for arg # = 0 the solution must contain left to right
propagating waves only.

From the discussion in section IV, a candidate solution for the
incident wave is B3 since it is long wavelength and propagates left to
right for arg # = . From Fig. 4 we see, however, that the argument

range of B, does not contain arg # = 0 so that we can not directly

3

determine the properties of B3 on the other side of plasma resonance. To

evaluate B3 for arg # = 0 we must analytically continue B, into this

3

argument regime. Refering to Fig. 2 we note that the cut integration
plane is free from singularities in the regions between the contours

defining the solutions B3, B2 and Al. The solution B3 can then be

related to the solutions B2 and A1 by extending the contour for B3 to

infinity in sector 2 and applying Cauchy’s Theorem. This procedure yields

the expression

B, = B, - e-i2ma_ 5 | (44)
'
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‘N whi_.c analytically continues B3 into the desired argument range since as
-~‘.

g

'3: shown in Fig. 4 the argument ranges of B2 and A1 both contain arg(z) = 0.
P i N
{ The factor e-i2ma_ jp (44) occurs because part of the distorted contour
i: for B3 (the dashed portion in Fig. 2) lies on the Riemann sheet for which
e the phase of the term (0-0,)%- in (17) is 2n less than it is on the

{ ' principal sheet in which the defining contour for Al lies. The fact that
oy

:;4 the analytic continuation involves the short wave length mode represented
R

:': by A means that mode conversion must occur. Thus the mathematical

procedure of analytic continuation corresponds to the physical process of

o :

. mode conversion.

.
»
u

A :
AOMMNAL 4 ARAS

B3 analytically continues into a physically acceptable solution

because, for arg(z)=0, (38) indicates that asymptotically (|z|* =, arg(z)=0)

B2 corresponds to a left to right propagating wave, while, from Fig. 3, we

[

note that Al also corresponds to a left to right propagating wave at arg 2

L]

= 0. Thus both waves transport energy away from plasma resonance. We

A
‘3 find then that a left-to-right propagating, purely long wavelength mode
-
W . . : $
A (represented by B3) incident upon plasma resonunce from inside the plasma
J gives rise to both a long wave length transmitted wave (represented by B2)
| x and a short wave length transmitted wave (represented by Al)’ The
D) .
» transmission coefficient for the cold wave is e~178 or ie™Bo. The
® reflection coefficient is zero, i.e., there is no reflected wave. These
g7y
14
:\i results are the same as obtained by Bafios, et. al. (1986), who considered
™
‘*g only the purely cold case represented by the reduced equation (i.e., (6)
L3 ‘,
@ with €2 = 0),
;by
| ; In obtaining the asymptotic expressions for B3, BZ’ and Al we have
1) »
: 3- assumed that the magnitude of the function arguments is large. While this
= assumption is consistent with the model plasma for negative values of z,
N
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it is not for positive values of z when considering the function B2

This is because the region 2 > 1 corresponds to a fictitious negative
value of plasma density arising from the approximation, 1 - wp?/w? = z/L,

in the model. Thus while the argument of the function A, ¢ = 22372 /3¢

can be assumed large for values of 3 < 1 because ¢? « 1, the argument of

the function B2 can not. However, an appropriate expression for the
function 52 can be obtained by assuming that the magnitude of the
coefficient a in the Kummer functions U{a,a;w) and M(a,a;w) is large in
comparison to a and the magnitude of the indererent variable w. In terms of
physical parameters this requirement becomes,
Izl < B,/(By?) = Q%/w? . (45)

Since, for waves propagating in the whistler band, w < I the requirement
(45) can be satisfied for values of 2 with 2, < 2 < 1 , where again 2, is
arbitrary but small and non zero. Then, for arg(z) = O and large lal,
U(a,l;w) and M(a,l;w) have the asymptotic behavior (Slater, 1970)

e V/2 U(a,1;w) ~ I'(l-a)[cos(na)T,(ix) - sin(ra)¥y(ix)] ., (46.a)

e V/2 M(a,1;w) ~ Jy(ix) , (46.b)
where J, and Y, are zero order Bessel functions of the first and second
kind, respectively, and x = 2(2ﬂ052;)1’2. Using (46.a,b) in (36) we then
obtain

B,(0) ~ im[Jo(ix) + i¥o(ix)] = 2Ko(x) (47)
where K, is the modified Bessel function. From (47) we see that, for
arg(z) = O, B2 represents a decaying function for increasing 12!.

Thus, a long wavelength whistler incident upon plasma resonance from
inside the plasma gives rise, beyond plasma resonance, to a short wavelength
Bohm-Gross mode propagating towards decreasing density and a decaying long

wavelength structure. No energy is reflected back into the plasma from
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VI. Electric Field Structure Near Plasma Resonance

Having established that a whistler wave incident upon plasma
resonance converts, without reflection, into a short wavelength thermal
mode, we now determine the structure of the electric field near plasma
resonance arising from the mode conversion process. We then relate the
amplitude of the field at the origin to the asymptotic amplitude of the
incident whistler wave.

The structure of the electric field of the incident cold mode in
the vicinity of plasma resonance can not be obtained from expressions !
such as (23) because the function BB(O) is singular at the origin. The

structure can be found, however, by relating the solution B3 to the

solutions Aj and Bo which are not singular at the origin. In addition,

this relation gives an expression for B3 valid for all values of arg(z)
when the series expressions for the functions A.j are used.
The relation useful for evaluating the behavior of B, near the origin

is established by deforming the contours which define the solutions B3 and

A2. As shown in Fig. 5.a, B3 can be related to Bl’ A3 and Al by extending

the contour defining B3 to infinity in sectors 1 and 2. This procedure is

permitted because the integrand in (12), the general expression for the
solutions, is analytic in the cut s-plane over the region of distortion.
Then by Cauchy's theorem we cotain the relation

- . . a-i27a.
B3 B1 A3 e A1 . (48)

The factor e-127a. multiplying A, arises because the argument of the term

1

(s - iB2)“- in (12) is 27 less than over the basic defining contour for A

1

shown in Fig. 2. Likewise, the contour defining A, can be pulled into the

2

point s = -iﬁz to coincide with the contours for B1 and the combination

el2may [eilma. B3 + Bo] as shown in Fig. 5.b, giving
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- - - i2ra i2na._
F" A2 B1 + e + [e B3 + BO] (49)
.x%. The relations (48) and (49) can then be combined to give
- i2na -1 -i2na_ . ai2na
By(3) = le 1)-1 A, + e A] + A, - el2may B ). (50)

The expression (50) for B3(;) is valid for all arg(sz) when the series
expressions (21) for Aj are used, so that (50) represents the analytic
continuation of B3 into all arg(z) values for the finite z-plane.
Note from (50) that the term outside the braces diverges as a
approaches integer values, so that it must be the case
: -i2xa_ . ei2rma -
Lim (A, +e Aj + Ay - ellmarp ] -0, (51)
a > 1
Using L‘Hopital’s Rule to evaluate (50) we then obtain
= 5 -i2na_ . i2na l
By = 1 ( (808, + 84(e Ap) + 3gAy - g(eilTatp )] a-l]' (52)
2xi
Note that to obtain (52) it is necessary to treat o, the coefficient of the
first derivative term in (6), as a general rarameter as was first pointed
out by Rabenstein (1958) in his extension of the work by Wasow (1953).
The function proportional to the electric field, B3' (where '
denotes derivative with respect to argument), is given by
[ ' -'2 - ' [
B, 271(_l ((8ah,' + e 1273-a1") + 344,") (53)

where the term proportional to the derivative of B, has been ignored in

0
(53) because it is smaller, by a factor of 52/3, than the terms
proportional to the derivatives of the functions Aj . Assuming that

0, = 152’3ﬂ2 « 1, the m = 0 term of the series expansion (21) can be used

to evaluate (53) to obtain B3' in terms of familiar functions,

B3' = m [ Gi(-n) + 1Ai(-n) ] . (54)

The details of this calculation are given in Appendix I1. In (54), Gi(-9)
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denotes a solution of the inhomogeneous, or driven, Airy equation

and Ai(-n) is a solution to the homogeneous Airy equation (Antosiewicz,
1970). The asymptotic form of the functions in (54) are

Ai(-n) ~ n~1/2p-174 gin(¢ + n/4) (55.a)
and Gi(-n) ~ m~1/29-1/4 cos(¢ + w/4) - m-1p~1 | (55.b)
where ¢ = 2n3/2/3, From (55.a,b) it is clear that the electric field
structure of the mode converted wave consists of a short scale length
wave propagating down the density gradient away from plasma resonance
together with a field that falls off slowly as 1/n.

The electric field amplitude at the origin can be related to the
asymptotic whistler amplitude by obtaining an approximation to Eq. (6)
valid near the origin for a = 1. With a = 1, (6) can be integrated once
to obtain

26 + 261 = [T (5 - 28,908 o + C (56)
where C is a constant of integration. Now consider the mode conversion
solution B3 which satisfies (56). Near the origin B3(0), which is the

leading term in the £? expansion of B,, is singular for small #, diverging

3
as In(z). For the purpose of estimating the relative magnitudes of the
terms in (56) for small z, B3 (and, thus ¢) can be approximated by 1ln(z).
Since ¢(1) is proportional to 31!, ;¢(1) is of order unity, while
52¢(3) is proportional to £2/23. The terms on the left hand side of (56)
are then of order unity, or larger, for small . On the other hand, the
integral term on the right hand side of (56) approaches zero. Evaluating
this term we find,
f;(ﬁl - B,? #)In(z)dz = B (31n(2)-3) -B,%(3%1n(z)-32/2)/2 . (57)

Since 21ln(z) and 2 are continuous and have the limit zero as # pgoes to

zero, the integral term on the right hand side of (56) can be made as
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KA RS

o small as desired by chosing # small enough. Thus for z < #, where z, is
o

s

vt such that

{

o By #o(In(2o)-1) - B,2(2,%(1n(24)-1/2)]/2 << Min(C,1) ,  (58)

(56) can be approximated by

- ez 43) 4 7241 - c . (59)
t
i By setting (1) = E, the z-component of the electric field, and using

\\"
":: z = gL, (59) can be written in the form

~‘_::

et yv2 d2E +2z E = E; . (60)

wpe2 dz? L

NS

N
:05 Equation (60) describes plasma resonance driven by a constant electric
oY field of amplitude E,. Thus we interpret the constant C in (59) as an
@

o effective external electric field strength at the origin, E,, which
';f excites the Bohm-Gross mode. The solution to (59) is then

L J‘.:

5 ¢(1) = -x Ey 7273 [Gi(-n) + iAi(-n)] . 4 (61)

o ey,

R Ay
i Sl ]

Interpreting ¢(1) as an approximation to the solution B,', i.e.,

3

¢(1) -C 8;B3 where C is a constant of proportionality, we obtain

e

C 3z By = -m e72/3 E, [Gi(-n) + 1Ai(-m)] . (62)

e However, from (54) we have for small 2 (i.e., 2 < 2,)

LA 4

P - €2/3 3, By = w[Gi(-n) + 1AL(-m)] , (63)

n By

LA

from which we conclude that the proper choice of the constant C is

*
'y

-E, and

i)

S

$(1) = -E, 5, B, . (64)

x

L 4
LG

Having used the behavior of B, near the origin to find the constant of

3

{ Pk

4

proportionality between B3' and ¢(1), we can now relate the field strength

r'

v

LA

E, to the amplitude of the incident whistler wave. Since the electric

SO

'I .l
s

potential of the incident whistler wave is represented, in the mode

"
“

5

conversion solution, by B3 for |#|* =, arg(#)=n, we use the asymptotic form
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of 83 and (64) to make this connection. Asymptotically 4z B3 -3, B3(0)
and from (40)
3z B,(0) ~ 1B, T(l-a) elna y-(l-a)ew/2 (65)

so that

-Eo 83 By ~ B, T(1/2+18,) ™o E, wo(l-a)ew/2 (66)
Since, as discussed in Sec. 1V, w'(l‘a)exp(w/Z) represents the functional
form of the asymptotic whistler, the coefficient of this term on the right
hand side of (66) can be equated to the electric field amplitude of the

whistler wave, which we denote as ﬂzEw. Using | T(1/2+iBy) |2 =

Jx/cosh(nB,), we then obtain

|Eg| = e TP [cosh(mBo)]1/2 E, - (67)
Jn
Eq. (67) relates the asymptotic value of the whistler electric field to
the value of the driver electric field of Eq. (60). In terms of physical

quantities the parameter B, has the form

- Q2
Bo sorryTr Kb (68)
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VII. Conclusions

This analytic study has identified a new mode conversion process that
can occur in magnetized plasmas having a longitudinal density gradient
(i.e., Vn, x E ~ 0), as may apply in the auroral ionosphere and long
mirror machines. It is demonstrated that an electrostatic whistler mode
with frequency w less than the electron gyrofrequency (i.e., w < f1)
transfers all of its energy to a hot Bohm-Gross mode at that point in the
density profile where w = wpe- The excited hot plasma mode propagates away
from plasma resonance in the direction of decreasing density and
eventually transfers its energy to background electrons. Thus the
mechanism described here provides a conceptual link between the presence
of large amplitude whistler wave activity and the generation of magnetic
field aligned fast electrons. Although no effort is devoted in the
present study to an evaluation of the quantitative consequences expected
for specific physical situations, this is a worthwhile project that requires
a separate survey.

Our major effort has aimed at providing an analytical description
of the mode conversion process and an evaluation of the structure of
the electric field excited at plasma resonance. The solutions of the
differential equation describing the mode conversion process are
divided into two categories. One category of solutions has short
wavelengths and is related to Bohm-Gross waves. These solutions do not
exist in the cold plasma limit. Expressions useful for evaluating the
asymptotic properties of these solutions are given in (20.a,b) while
the series expression given in (21) is useful for evaluating the
solutions near the origin. The second category of solutions is

characterized by long wavelengths and includes solutions that
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asymptotically represent propagating electrostatic whistler waves. The

analytic expressions given in (29) and (36) in terms of Kummer
functions are useful for evaluating these solutions away from the
origin. The long wavelength solutions are evaluated near the origin by
relating them to the series expressions of the short wavelength
solutions. The physical process of mode conversion is shown to
correspond to the mathematical procedure of analytic continuation which
relates a long wavelength solution defined over a given argument range
to a combination of short and long wavelength solutions defined over a
separate argument range.

Although the details of the analysis presented are somewhat involved,
they point to a powerful simplification in describing the mode conversion ;

process. It is shown rigorously that at plasma resonance the excitation

of the Bohm-Gross mode results as if it were driven by a uniform capacitor
plate electric field, E,, as has been invoked previously in other resonant
excitation problems (Morales and Lee, 1974 ; Shoucri and Kuehl, 1980).
The analytic expression given in Eq. (67) relates the effective pump field
E, to the asymptotic whistler amplitude EW' providing the connection
needed to apply the capacitor plate model to an incident wavé problem.
The plasma properties appear through the single parameter S, =
leQQ/[Zw(QZ_w2)1/2]'

Finally, we note that the analysis presented here complements and
extends a previous study (Maggs, et.al., 1984) devoted to the properties
of resonant excitation of a plasma driven externally at frequencies larger

than the electron gyrofrequency (i.e., w > Q).

'J' s T e e ~ .

S « el DTN N -("- ‘A'N)' -('\\\'\\‘\ ‘\'ﬂ
. L) ] - ) , - .
O PR RSN ’.::A" .&mtﬁu OGS ,.ml,.\ _.Jim ..:f..mﬂis YIS .'a-}.m,} ARG AL, .sm



o Wy - 4 ta 2 “alln c AN i @™ s FWWHNEUT W R F " N IRN LAV CITTIJTUNINT N3N TAAARARSARARLAR[ZT AT AT AR TR T S e N V"W
. .
30 i
- - |
|
1
@

A ‘

i’:\ N ACKNOWLEDGEMENTS

The authors acknowledge the many contributions and active participation of ‘
'N Professor Alfredo Bafios, Jr. in much of this research. This work was
" supported by NASA and the Office of Naval Research.

K

= NI

I'd

£

- -

- ee e

;c}r

-
*

I E @RI,
Y o h Pl
AAR T A

P
PN
AN

g

o \"l.'-"."t. L%

sty

x

(%"

4.--4
A
A

4

7

2

G5

@ 227
LR

...
v hd &
SRR AR

et

o

f

o kA
e

» v e

£ .. RISy

oL

A T M RN
PN 1) 5T P,
NSy GRS

4%,



NS

E

Ay

L

e,
) '-‘

[t
32 v

L
o .

b

‘-, * ot Yy 'v“
L s
LU AR SN

oy -

.
1.‘,‘4.
3t ata

- e .
»
a

e e
ANAAR

i

2 2|0
LA B T

E5 2 an
x >
R o I -&’ﬂr '-l':‘

7
’
b

-31-

REFERENCES

Antosiewicz, H.A., Bessel Functions of Fractional Order, in Handbook of
Mathematical Functions, edited by M. Abramowitz and I.A. Stegun
PP. 435-478, Dover, New York, 1970,

Batios, A. Jr., J.E. Maggs and G.J. Morales, Anomalous Reflection
Exhibited by a Generalized Resonance-Tunneling Equation,
Phys. Rev. Letters, 56, 2433-2436, 1986.

Coddington, E.A. and N. Levinson, Theory of Ordinary Differential
Equations, Sec. 5.8, McGraw-Hill, New York, 1955.

Erdelyi, A., W. Magnus, F. Oberhettinger, and F. Tricomi, Higher
Trancendental Functions, Bateman Manuscript Project, Vol. 1,
McGraw-Hill, New York, 1953.

Maggs, J.E., A. Bafios Jr. and G.J. Morales, Solutions of a Fourth
Order Differential Equation Describing Mode Conversion in a
Magnetized Plasma, J. Math. Phys., 25, 1605-1618, 1984,

Morales, G. J. and Y.C. Lee, Ponderomotive-force Effects in a Non-uniform
Plasma, Phys. Rev., Lett., 33, 1016, 1974.

Rabenstein, A.L., Asymptotic Solutions of ui¥ + AZ(zu"+ou'+Bu)=0
for Large |X|, Arch. Rat. Mech. Anal., 1, 408, 1958,

Shoucri, M., and H.H. Kuehl, ’Nonlinear Effects on the Mode Conversion of
Upper Hybrid Waves’, Physics of Fluids, 23, 2461-2471, 1980.

Slater, L.J., Confluent Hypergeometric Functions, in Handbook of
Mathematical Functions, edited by M. Abramowitz and I.A. Stegun
pp. 504-535, Dover, New York, 1970.

Wasow, W., Asymptotic Solution of the Differential Equation Governing
Hydrodynamic Stability in a Domain Containing a Transition Point,
Ann. Math., 58, 222, 1953,

R s e Y ST I RTAT b T DT AT AT TRV S 3
T Y T SR LR e

[

M Xk ] n"‘q.”o?’:;‘!"~| ..'.




-32-

s Appendix I:

y In this appendix a series representation of the solutions A4 is

g

1,

derived by expanding the integrand of (17) in a series in ¢,/¢ and

-

- e S

NN

'

»
-

integrating term by term. Writing

v
P A
'-."-

(0-00)% (0+0)%* = a® 2 % e (ao/0)" (1.1)
m =0

:' \
.'l‘ll‘,l q

a
'y
Pard

.

2
"‘

where the coefficients cm are

cw=2 On () (o), (1.2)

n=0

_.4,.
Cetn [
BRAARAY

%
>

[
S

and ( a ] - _a!  is the familiar binomial coefficient, gives
n n!(a-n)!

|

s A = p, 2D

o J j c aom g(":a'm) ’ (13)

m
m

where

‘ﬁ g(n,a-m) -J do aa-m-2 exp( -(o3/3 + an)) . (1.4)
) IO

g\

-
¥

The factors pj in (I.3) are the same as defined for the asymptotic

‘-
RSO

representation of the functions Aj given in (20.a,b). Expanding

exp(-on) In a series then gives

[/

=
P

)

P

gna) =y (K I(ak) , (1.5)
k k!

TRy
L4

PR

@.
s

» )'.'
TS

where the functions g(n,a) are the same as used by Rabenstein (1958), and

I(a,k) = do aa-Z-k

C(A,
(AJ)

exp (-0%/3) . (1.6)
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The integral in (I.6) can be evaluated by making the change of variable,
y = 03/3. The contour corresponding to A.j then transforms into one which
starts at infinity with argument 2x + 2n(2-j), encircles the origin in the
counter-clockwise direction, and ends at infinity with argument 4= +
2n(2-3j). Such contours correspond to Hankel's contour (Erdélyi, et.al.,
1953) so that (I.6) can be written in the form,

Ii(ak) = 2ni exp(ri(1-p)(7-25)) / (3° T(o)) , (1.7)
where p = (4-a-k)/3. Using (I.7), (I.5) and (I.3) then gives a series

expression for Aj valid in the finite z-plane for all values of arg(z),

-2(a-1)/3 o m o,k i k
5 - ¢ pj 2E 2& ¢ %o ﬁ!g Ij(a m,k) n . (1.8)
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Appendix II

In this appendix the functional form of the electric field of the mode

conversion solution B3' is obtained in terms of the Airy function, Ai, and

the driven-Airy function, Gi. Starting with equation (53) which gives B3'

in terms of the derivatives of the functions Aj' with respect to «a,
namely,

By = 1 [ 9aa
2ni
and using the m=0 term of the series representation of the functions A,

o+ dgei2man 1) 4 gant ) (II.1)

given by Eq. (21) or (I.8), we obtain

>l

J

d,A." = [8,1n p. - 2 1ln e]A.' + p,
aAJ [8qln Py z €] ; P j

()k 8,1, k-l (11.2)
1 (k-1)1

-

where

dal; = 1 [ 7i(7-23) + 1n 3 + ¥(p)] I, (11.3)
3

with ¥(p) = d[{In I'(p)]/dp and where I, is given by (22) or (I1.7).

A
Defining the coefficients
P; T
c, =_J 2_ [OL ¢(p)1j(p) nk-1 (I1.4)
J 3 %01 (k-1)¢

we can then obtain from (II.1) using (51) and (II.2)

By’ - [2e-12"a-A1' +Ay'1/3 + [Cy + e-i2"a-c1 + Cq] . (I1.5)
Y, Since Ij is inversely proportional to I'(p) , where p = (3-k)/3 when a=1,
Eé‘ the factors Cj contain the term
& T = $(p)/T(p) = T'(p)/T2(p) . (11.6)
: To evaluate this term it is convenient to split the sum over k into three
34 separate sums where
is in case 1: k =3¢ ; ¢=0,1,2,... . (1I1.7.a) |
'f: in case 2: k=3n+1 ; n=1,2,3,... |, (I1.7.b)
R
0
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and in case 3: k=3m+2 ; m=1,273 ... (I1.7.¢)

Using the various values of k in (I1.7) then gives for

case 1: p=2 -1 ;T=()¢-1)1, (II.8)
n
case 2: p=2/3 -n ; T = (-)n(%] [ $(2/3) + (%] 1/T(2/3) ,  (11.9)
n
where (a]) = r(a+n)/r(a) , (I11.10.a)
n
is Pochammer's symbol and we have defined a new symbol,
n-1
a) =)y 1 : (11.10.b)
—_ j+a
j=0
and, case 3:
m
p=1/3 - m; T = () (%]m [vs3) + (2] irass) . (11.11)

The calculation of B3' is further facilitated by employing the following

notation
UM (1) L L O ey L N By
£(z) = ) et (E]n z3n Y fn fi@) = ) Gl . ar.12)
n=0 n=0 n=0
T am 2) Z3mtl . : T W
g@) =) S (g = L en i 2t =) (Hen, (11.13)
m=0 m=0 m=0
and h(z) = ) 31 gy 301 (11.14)
1=1 (32-1)!

Using the series notation given in (II.12-14) and splitting the sum over
k into sums over £,m, and n, the factors Cj can be written as

C5 = 2ni py eH(T-2)/3 1 h(m) - o) [ $2/DER) + £L(H) ]

wi

+c, [ ¥(1/3)g(m) + gi(h) ] } , (I1.15)

where

c, = 1/(32/31(2/3)] ; ¢, = 1/[31/3r(1/3)] ; 7 = e®1(7-23)/3 y | (11.16)

1 2

Using (II.15) together with the relation,
- i p: e®i(7-23)/3 A 7
Ayt = 2ni py e D3 e, g - e £ ), (I1.17)

which can be obtained from the series representation of A, by splitting

N

the sum over k into separate sums over £,m,n and noting F'l(-i) - 0,
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53' can be written from (II1.5) as

By’ = £C-n)( 2ri c; (2e-71/3 4 emi/3y 4 Ecl¢(2/3)] + Teyfi(-n)

3
-g(-m) (211 ¢, (2em1/3 4 evmi/3) 4 Se $(1/3)) + Te fi(-n)
3
- h(-n) , (I1.18)
where ¢ = 1 + e27i/3 4 o-27i/3 | Notiig that © = 0, then gives

By = 2t Y (et /3e £(on) - (1+el®/e g(-m)} - h(em) L (11.19)

From the definition of the Airy functions (Antosiewicz, 1970)
Ai(x) = clf(x) - c2g(x) , (I1.20.a)
and Gi(x) = 3‘1’2[c1f(x) + czg(x)] + nth(x) . (I1.20.b)
B3' can be simply written using (II.19) and (II1.20.a,b) as

B3’ =n[ Gi(-n) + 1Ai(-n)] . (I1.21)
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ijﬁ Figure 1. An electrostatic whistler with frequency w, less than the

' i electron gyrofrequency Q, propagates to plasma resonance (i.e., the point
! in the plasma where w=w;,.) located at 2=0. The gradient in the plasma
-, pe

P

”:;f density is co-linear with the magnetic field.

N

o

i Figure 2. The integration plane is cut by branch lines extending from
in’- the branch points s=iiﬁ2 to infinity parallel to the real axis. The
.ﬁ_'u‘?

: ? contours defining the long wavelength solutions to (6) all start at the
_’!3 poeint s = -iﬂz. Examples of the contours for this class of solutions
,_'- .

;{l which are related to the solutions of the reduced equation (8) are BO,
.~

,::n B3, and B2. The contours are shown as solid lines when they lie in the
{x._ principal Riemann sheet and dashed lines when they lie in an adjacent
i a J‘

;};: sheet. The contour labeled Al’ which extends to infinity in sectors 2
1ot

and 3, is an example of a short wavelength solution.

Ci

2]

ig?{ Figure 3. The argument range of-z over which the asymptotic

.

.Ei} expressions for Aj given in (20.a) and (20.b) are valid are shown for
:H each saddle point o = * in!/2, The function behavior at values of
,éé arg(#) integer multiples of n/3 is also indicated. Specifically, A1
o

:ig: behaves .symptotically as a left to right propagating wave at

!» arg(z) = 0.

a

jj

Figure 4. The principal argument ranges for the functions Bj (j=-1,2,3)

are shown in relation to those for Aj . Asymptotically, the functions B2
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:f\ and B3 represent left to right propagating, long wavelength waves at
N
'-
N . . . .
"y arg(3) = 0 and n, respectively. The function B, asymptotically contains

1

waves propagating in both directions for arg(z) = -n. The argument range

of the function B, is not restricted. At arg(z) = 0, B

0 contains both

0
left and right propagating waves.

Figure 5. a). The defining contour for the function B3 can be distorted

to coincide with the contours defining Bl’ A3 and Al' Cauchy'’s Theorem

can then be used to produce a relation among these solutions useful

for analytically continuing B3.

b). A, can be related to By and a combination of B, and By by

distorting the defining contour and applying Cauchy’s Theorem. In
addition to pulling the contour in towards the point s = -iﬂz , the lower
half of the contour for A2 is pulled around the point s = iﬂ2 in the

counter-clockwise direction and back towards s = -iﬂz after passing onto

the adjacent Riemann sheet.
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